Finding the largest volume and surface objects using a Lagrange function

Authors

  • Samatov S. 2nd year student of the Faculty of Mathematics of Samarkand State University,
  • Abduvokhidov A. 1st year master student of the Faculty of Mathematics of Samarkand State University

Keywords:

Conditional extremum, Lagrange function, partial derivative, surface

Abstract

It is easy to find the extrema of functions of many variables. This thesis explores the properties of the largest surface and volume forms that are useful in optimization problems using the conditional extremum of multivariate functions.

References

Sh.Alimov, R.Ashurov. Matematika analiz, 2-qism.”Mumtoz so’z”, Toshkent, 2018.

Б.П.Демидович. Сборник задач и упражнений по математическому анализу. 13-е издание, издательство ЧеРо, Москва,1997.

T.Azlarov, X.Mansurov. Matematik analiz, 2-qism. “O’qituvchi”, Toshkent, 1998.

G.F. Hadley, "Nonlinear and dynamic programming" , Addison-Wesley (1964).

G.A. Bliss, "Lectures on the calculus of variations" , Chicago Univ. Press (1947).

L.S. Pontryagin, V.G. Boltayanskii, R.V. Gamkrelidze, E.F. Mishchenko, "The mathematical theory of optimal processes" , Wiley (1962) (Translated from Russian)

Downloads

Published

2021-12-26

Issue

Section

Articles

How to Cite

Finding the largest volume and surface objects using a Lagrange function. (2021). Texas Journal of Multidisciplinary Studies, 3, 227-229. https://mail.zienjournals.com/index.php/tjm/article/view/508